The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is

  • [KVPY 2012]
  • A

    $\frac{1}{4}$

  • B

    $\frac{3}{2}$

  • C

    $\frac{2}{3}$

  • D

    $-\frac{2}{5}$

Similar Questions

The domain of the function $f(x) =\frac{{\,\cot^{-1} \,x}}{{\sqrt {{x^2}\,\, - \,\,\left[ {{x^2}} \right]} }}$ , where $[x]$ denotes the greatest integer not greater than $x$, is :

Let $f : R -\{0,1\} \rightarrow R$ be a function such that $f(x)+f\left(\frac{1}{1-x}\right)=1+x$. Then $f(2)$ is equal to :

  • [JEE MAIN 2023]

Let $f : N \rightarrow R$ be a function such that $f(x+y)=2 f(x) f(y)$ for natural numbers $x$ and $y$. If $f(1)=2$, then the value of $\alpha$ for which

$\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ holds, is

  • [JEE MAIN 2022]

The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$  is defined for all  $x$  belonging to

Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Range of the function f (x) is